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UNIVERSITY OF BAHRAIN 
COLLEGE OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 
 

NONLINEAR CONTROL SYSTEM 
EENG 485  

 
COMPUTER LAB NO.1 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

NONLINEAR CONTROL SYSTEM SIMULATION 
 
 
   
Objectives:   
 

- To learn how to simulate a nonlinear system. 
- To study in depth the time domain behavior of a nonlinear pendulum system. 
 

Equipment: 
- Laptop or Desktop Personal Computer. 
- Printer. 
- Matlab as simulation environment. 

 
Steps: 
 
The motion of a frictionless pendulum of length L is governed by the differential equation. 
 

 
 
where y is the angle (in radians) that the pendulum makes with the vertical, g = 32:2ft=sec2, and L is the length of the 
pendulum. Although this a non-linear system, as you will see below, linear systems are very important in its analysis. This is 
an example of a technique called linearization" that will be studied at greater depth later in the class. 
 
Assume that L = g so that the equation simplifies to : 

 
 
This equation is equivalent with the system. 
 

 
 
(1) Show that the only equilibrium points for this system are (y; v) = (k_; 0) where k runs over the set of integers.    
 
(2)     Use pplane to construct the phase plane portrait for the system (2) using 

 the range. 
 

(2) For small y, siny _ y. Thus, we expect that for small y, the solutions to system (2) should have similar behavior to 
the solutions to the following linear system. 

(3) To verify this, open a new MATLAB Command window by clicking again on the icon you use to start MATLAB. In 
this new window, start pplane and plot the phase plane portrait for system (3) using the same range on v and y as 
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in step 1,   to demonstrate that the behavior of the linear system approximates the nonlinear one near (0; 0).    
According to the classification in you class notes, what kind of equilibrium does (0; 0) seem to be? Prove that you 
are right by finding the eigenvalues and eigenvectors.    Get this plot printed. 

 
 
Hint:  You can get MATLAB to compute the eigenvalues and eigenvectors. Type \help eig" in the MATLAB Command widow 
for instructions. 
 

(4) There is also an equilibrium at (; 0). To analyze this equilibrium, let u = y − . Then, u0 = y0 so system 
is equivalent with 

 

      
Reasoning similarly to previous steps, construct a linear system which approximates this system near u = 0.   Plot its phase 
plane portrait in the second pplane window used in previous steps and classify the type of singularity according to the 
classification in your class notes.   Prove your guess by computing the eigenvalues of the corresponding system.  Get this 
plot printed.  Then close this window. 
 
 

(5)  Using the pplane plot,  in the pplane Solutions pull down menu, select \Find an Equilibrium Point".   A 
cross will appear on the screen. Using the mouse, place the cross close to (0; 0) and click.  
 
A large red dot will appear indicating the position of the equilibrium point. Note that the type of 
equilibrium points as well as the eigenvalues for the linear system are indicated. Similarly mark the 

equilibria at  (; 0), (2; 0) and (3; 0). 
 
 

(6)  In the pplane Solutions pull down menu, select \Plot Stable and Unstable Orbits".   A cross will appear 

on the screen.   Using the mouse, place the cross on the equilibrium point at (; 0) and click.  
 
What is produced is the orbits that are tangent to the eigenvectors of the linear approximation to the 
system (3) at the given point. Demonstrate this by plotting the eigenvectors.    To plot the vector from [0; 
0] to [a; b] enter  plot([0,a],[0,b]). 

 
 

The vectors should appear in the pplane display window. Indicate which of these orbits is stable and 
which is unstable. (Here, stable means that the orbit moves toward the equilibrium point and unstable 
means that it moves away from the equilibrium point.)  
 
How, from the eigen-values, can you tell which is which? 

 
(7)  Plot the stable and unstable orbits for each of the remaining equilibrium,  still using the same display 

window. You need not plot the other eigenvalues. The plots for the points (2k; 0) will be single points. 
 

Remark:  

The equilibria at the points ((2k+1);  0) in this system are all saddle points. At each saddle point for an 
autonomous system, there are four special orbits, called separatrices, whose tangent lines are parallel to 
the eigenvectors of the linear approximation.  (Each one is a separatrix.) 

 
(8) The reason for the term "separatrix" is that the separatrices separate the phase plane into regions 
where the solutions behave very differently.  Demonstrate this by plotting the orbits corresponding to 
several initial conditions lying inside the regions bounded by the separatrices and several initial conditions 
lying outside these regions. Describe the motion of the pendulum for each type of initial condition. 
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UNIVERSITY OF BAHRAIN 
COLLEGE OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 
 

NONLINEAR CONTROL SYSTEM 
EENG 485  

 
LABORATORY NO.2 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

VAN DER POL OSCILLATOR 
 

 
  

 
Experiment Objectives:   
 
- The main objective of this experiment is to make further analysis of the Van der Pol oscillator . 
- To achieve few simulation of this dynamic system and compare them with some theoretical handwork. 
- To study the limit cycle of oscillation and the associated phase plan analysis. 
 

Equipment: 
- Laptop or Desktop Personal Computer. 
- Hand Calculator. 
- Printer. 

 

A Brief Introduction to The VAN DER POL OSCILLATOR 

 
The labels mathematician, engineer, and physicist have all been used in reference to Balthasar van der Pol. The van der Pol oscillator, 
which we study in this notebook, is a model developed by him to describe the behaviour of nonlinear vacuum tube circuits in the 
relatively early days of the development of electronics technology.   A little more detail on his work, taken from the Exploratorium web 
site (http://www.exploratorium.edu), is given below. A brief description of a circuit described by the van der Pol equation is given in 
Nonlinear Dynamics and Chaos, Steven Strogatz, Addison-Wesley 1994, p. 228. Chapter 7 of Strogatz' book contains a very readable 
discussion of the equation. Our study in this notebook will be based entirely on numerical solutions. The rigorous foundations for the 
analysis (e.g., the proof that the equation has a limit cycle solution which is a global attractor) date back to the work of Lienard in 1928, 
with later more general analysis by Levinson and others. Perturbation techniques are also useful for the case of large parameter, but we 
will not consider them here. 
  
"Balthazar van der Pol was a Dutch electrical engineer who initiated modern experimental dynamics in the laboratory during the 1920's 
and 1930's. Van der Pol investigated electrical circuits employing vacuum tubes and found that they have stable oscillations, now called 
limit cycles. When these circuits are driven with a signal whose frequency is near that of the limit cycle, the resulting periodic response 
shifts its frequency to that of the driving signal. That is to say, the circuit becomes "entrained" to the driving signal. The waveform, or 
signal shape, however, can be quite complicated and contain a rich structure of harmonics and sub-harmonics.  In the September 1927 
issue of the British journal Nature, he and his colleague van der Mark reported that an "irregular noise" was heard at certain driving 
frequencies between the natural entrainment frequencies. By reconstructing his electronic tube circuit, we now know that they had 
discovered deterministic chaos. Their paper is probably one of the first experimental reports of chaos --- something that they failed to 
pursue in more detail. Van der Pol built a number of electronic circuit models of the human heart to study the range of stability of heart 
dynamics. His investigations with adding an external driving signal were analogous to the situation in which a real heart is driven by a 
pacemaker. He was interested in finding out, using his entrainment work, how to stabilize a heart's irregular beating or "arrhythmias"." 
 

The van der Pol Equation 
The van der Pol equation, in what is now considered to be standard form, is given by 
 
 
 
Steps: 
 
Time response: 
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- Start Matlab on your PC and make sure you have created your own working sub-directory. 

- In the Matlab environment, make sure the control toolbox has been installed,  type help control. 

- Simulink code for the simulation of the Van der Pol oscillator, vdp1.mdl . 

-  Run the simulink code for different initial conditions x1_0 and x2_0. 

- Drive the basic equation for the Van der Pol oscillator and prove the above results you got by simulation. 

- Do any changes to the Van der Pol oscillator  parameters …   Observe the effect of such changes ! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.control.toronto.edu/~maggiore/Contents/Courses/ECE1647/downloads/vdp1.mdl
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Equilibrium and Stability 
There is an equilibrium at the origin, and it is obvious from the slope vector that there are no other equilibria.   We give this equilibrium a 
name, and then look at the eigenvalues of the derivative matrix eqmat at the equilibrium. 
 

 
 
We see that if 0 <  < 2, the equilibrium is an unstable spiral.    For  > 2, the equilibrium is an unstable node.   Because there are no other 
equilibria, the only possible attractors for this system are the point at infinity, or periodic solutions. We will let the computer tell us which. 
 
 
The Limit Cycle 
 
We begin our numerical work with a phase portrait based on four selected initial conditions. 
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This looks very much like a globally attracting limit cycle. Let's try to construct the pure limit cycle. 
 

 
 
 
 
 

 
 
 
The remarkable fact about this oscillator is that every initial condition in the phase plane ultimately leads to this periodic motion with a 
period of 6.66. (Our calculations only suggest the truth of that statement. A proof requires a rigorous mathematical analysis which is 
given in some of the references mentioned above.) 
 
 
 
Conclusions : 
 
- What is the Van der Pol oscillator  ?  How it was originated ?   Make few concluding remarks regarding this issue. 
- Write a laboratory report describing your results and comment on the system behavior. 
- What do think of the limit cycle ?    and the System Phase Plan !!   Make any Conclusions ! 
 
 
 
 
 
 

Prof. Ebrahim A. Mattar 
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LABORATORY NO.3 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

LYAPUNOV  POTENTIAL FUNCTION  ANALYSIS (MAGNETIC LEVITATION) 
 

 

 
 
Objectives:   
 

- To look in detail at the issue of Lyapunov Theorem for Global Asymptotic Stability. 
- To simulate this via Matlab and do detailed analysis of the nonlinear dynamic system. 
 

Equipment: 
- Laptop or Desktop Personal Computer. 
- Hand Calculator. 
- Printer. 

 

 
 

Quoted Figure from, “Magnetic Levitation Systems”  
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Steps : 
 

 
Potential Function Computation: 
 
For the given dynamic system investigate if  the candidate potential Function V(x) is a Lyapunov function or not. 
 
Figure below shows the diagram of a magnetic ball-suspension system,   where the objective of the system is to 

control the position of the steel ball by adjusting the current.    

 

- Advice any Potential function V(x).   

- Investigate the stability. 

- Simulate the nonlinear system behavior. 

- Drive the transfer function of the system relating the input voltage e(t) with the steel ball position y(t).     

- Compare the two results.     

 

 

Time response Analysis: 

- V(x) is the given candidate for the Lyapunov function.  Hence what a potential function are you 

suggesting ? 

- Make the simulink simulation for the given dynamics and show how the dynamic system will be 

behaving at different initial condition.  (i.e to show that global stability cannot be guaranteed). 

- Obtain the Radial Unbounded-ness for the magnetic ball-suspension.  Example is shown below. 

 

Servo System Stability (Via  Lyapunov  Candidate function) 

- Go to the Position sevro and advise any potential function.  

- Investigate the stability. 

- Run the system and prove it via measurement of the servo output.    (Transfer function of the servo 

system are found within the lab manuals) 

- All experiments parts are found in the control laboratory. 

- Show all your results. 

 
Prof. Ebrahim A. Mattar 
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Laboration 2 – Nonlinear Control

The Furuta Pendulum
Bo Lincoln, Dept. of Automatic Control
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Figure 1 A schematic picture of the Furuta pendulum

1. Introduction

In this laboratory session we will design a nonlinear controller for an in-
verted pendulum on a rotating base (known as a “Furuta” pendulum). This
is done by Lyapunov design, i.e. by inventing a Lyapunov function and
making sure its derivative is negative by control. In the end of the lab
there is also a short section on friction compensation, which makes a
huge difference for our pendulum.

Important! There are 5 assignments in the lab. Number 2 and 3 has
home assignment parts, which you will have to do before the lab.

The lab will be performed in Matlab Simulink, which you are now famil-
iar with. We will both run pure simulations with a model of the pendulum
in Simulink, and we will also run it with “hardware-in-the-loop”. The latter
means that we will replace the pendulum model with a special Simulink
block which communicates with the real pendulum in real time, and actu-
ally run our algorithms on the real pendulum.

The Matlab files you need to copy are pendlib.mdl, pendbasic.mdl,
estimatefriction.mdl, and pendinit.m. Start Matlab and run pendinit.

2. The Furuta Pendulum

The Furuta pendulum is a free pendulum on a rotating arm, see Figure 1.
We can control the torque for rotating the arm, and if it is done right, we
can balance the pendulum in the upright position. To be able to do this,
we need a correct mathematical model of the nonlinear dynamics of the
pendulum.

2.1 Nonlinear Model
The dynamics of the Furuta pendulum are rather complicated due to the
rotation of the pendulum. Some Lagrange theory “simplifies” matters, and

2



after some algebra we end up with:

(Jp + Ml2)(θ̈ − ϕ̇ 2 sinθ cosθ) + Mrlϕ̈ cosθ − nl(M +m/2) sinθ = 0

Mrlθ̈ cosθ − Mrlθ̇ 2 sinθ + 2(Jp+ml2)θ̇ϕ̇ sinθ cosθ
+(J +mr2 + Mr2 + (Jp+ml2) sin2 θ)ϕ̈ = u.

(1)

To make it more readable, we introduce

a = Jp + Ml2 b = J + Mr2 +mr2

c = Mrl d = ln(M +m/2)

and the equations of motion can be rewritten:

aθ̈ − aϕ̇ 2 sinθ cosθ + cϕ̈ cosθ − d sinθ = 0

cθ̈ cosθ − cθ̇ 2 sinθ + 2aθ̇ϕ̇ sinθ cosθ + (b+ a sin2 θ)ϕ̈ = u,
(2)

where θ is the angle of the pendulum, and ϕ is the angle of the arm. We
control u, the motor torque on the arm.

Approximate coefficients for the pendulum used in the laboration are:

l = 0.413 m r = 0.235 m

M = 0.01 kn J = 0.05 knm2

Jp = 0.0009 knm2 m = 0.02 kn

2.2 Linearized Model
To be able to stabilize the pendulum in the upright position, we need a
controller. The most commonly used method to design a controller is to
linearize the nonlinear model and form at linear controller for this model.

To do this, we introduce the state

x =
θ θ̇ ϕ ϕ̇


and linearization of the system (2) around

x =
 0 0 0 0

 ,

which is the upright position of the pendulum with zero velocity, gives

ẋ = Ax + Bu =


0 1 0 0
bd

ab−c2 0 0 0

0 0 0 1
−cd

ab−c2 0 0 0

 x +


0
−c

ab−c2

0
a

ab−c2

u. (3)
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Model

Pendulum−model
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−L

Figure 2 The set-up to simulate your linear controller.

Pivot point

θ

a

Figure 3 The planar pendulum, with only two states. The dashed circle is the
possible “orbit” for the pendulum mass.

ASSIGNMENT 1
Calculate the linearized model in Matlab (i.e. calculate the A and B
matrices). Show that the linear feedback

u = −Lx

with L =
−7.5343 −1.3465 0 −0.2216

 almost stabilizes the
linear model. Which state is not stabilized?
Open Simulink and get the “Pendulum-model” block from pendlib.mdl.
Insert this controller and simulate it (see Figure 2). Does it work?
For which initial states? Why does it not work for all initial states?
(Oscillations around zero are due to friction.)

3. Swinging Up the Pendulum

Now that we have a stabilizing controller for the upright position, we would
like to desing a controller which gets the pendulum close enough for our
linear controller to work (a “swing-up”-controller). To be able to solve the
problem, we will approximate the Furuta pendulum model by a planar
pendulum (see Figure 3).
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The equations of motion now simplify to

θ̈ = Mnl
Jp

sinθ − Ml
Jp

a cosθ , (4)

where a is our control signal. It is the acceleration sideways of the pivot
point. We can create this acceleration with our usual control signal u, i.e.
the torque to the pendulum arm.
All parameters of the pendulum can actually be described by one parame-
ter, which we call ω0:

ω0 =
√

Mnl
Jp

and the equation simplifies to

θ̈ = ω 2
0 sinθ −ω 2

0
a
n cosθ

ASSIGNMENT 2
Home assignment: The name ω0 suggests that it denotes a frequency.
Show why, and suggest a way to estimate this parameter from experi-
ments. Hint: Keep a = 0 and linearize around θ = π (down position).
At the lab: Do the experiment on the Pendulum-model in Simulink or
on the real pendulum. Which value of ω0 did you get?

3.1 Energy Control
A very useful method to get the pendulum to the upright position is to
control its energy to be the energy of the top position. The total energy
(potential energy + kinetic energy) of the pendulum is:

E = Mnl(cosθ − 1) + Jp

2
θ̇ 2

or normalized by ω 2
0

En = cosθ − 1+ 1
2ω 2

0
θ̇ 2

If the pendulum has energy En = 0, it will either be moving along the
orbit in Figure 3 or be at the top position, with zero velocity (check this by
inserting θ = 0, θ̇ = 0). This is due to the fact that no energy leaves the
pendulum in our model. When the pendulum is close to the “up-position” it
will have low speed, and it is very easy for the linear controller to “catch”
it.
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ASSIGNMENT 3
Home assignment: We want the energy En → 0 both if the pendulum
has too much or too little energy. Let V (x, a) = (En(x, a))2 be a Lya-
punov function candidate. Find a simple controller a = F(x) such that
d
dt V ≤ 0 for all x.
Hints:

• Differentiate and simplify V first, and see how you can choose a
to make the derivative negative.

• Don’t use control signals larger than 1.

• Make the controller non-linear!

At the lab: Simulate the controller with the Pendulum-model in
Simulink. Insert the “Theta, thetadot observer”-block in front of your
controller. It is needed to give good measurements of θ and θ̇ for the
full 360○ motion.
If it does not work properly, modify it until it does.

4. The Full Monty

Now it is time to put it all together. We want the controller to have two
modes:

1. Swinging up the pendulum (your controller).
2. Catching and balancing it in the top position.

In the Simulink model pendbasic.mdl a working top-position-controller is
already given.

u

xu

Top controller

Thetad

Theta

Phid

Phi

Model

Pendulum−model

em

Figure 4 The Simulink setup with pendulum model and a top-position controller.
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Theta
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xu
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Pendulum−model
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Mode select

em

Figure 5 The full pendulum controller.

+

Pendulum

Relay

-

Friction

Control signal Torque
u τ

ϕ̇

k

Figure 6 A model of the ϕ friction. The friction will work in the opposite direction
of the velocity ϕ̇ . The constant k is the friction torque.

ASSIGNMENT 4
Construct (in Simulink) a switching method, which switches between
your swing-up controller and the given top-position controller. See Fig-
ure 5 for a useful structure. Hint: For example, switch to top controller
when θ and θ̇ are both “small”, i.e. close to the top position with low
velocity.
When it works with the Pendulum-model, go to the real pendulum and
run your controller there. Modify it until it works.

5. Friction Compensation

When the pendulum is in its upright position, it oscillates in ϕ (the arm
position). This is due to friction which makes the arm stick although u �= 0.
A simple way of modelling the friction is shown in Figure 6.

A simple but efficient way of compensating for this is to estimate k off-
line (k̂) and give the control signal a extra “push” in the right direction
depending on ϕ̇ – see Figre 7.

In the Simulink model estimatefriction.mdl (see Figure 8) a simple
PI-controller has been implemented to keep the arm velocity ϕ̇ constant
(with the pendulum hanging down).
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Figure 7 A simple friction compensation where an extra torque k̂ is added in the
right direction.

u

To Workspace

Selector

Scope1

u x

Pendulum−model

s

0.3*[1 0.5]

PI−controller

0

Constant

Figure 8 The Simulink setup to estimate friction.

ASSIGNMENT 5
How can you use this to get an estimate k̂ of the friction torque? Es-
timate it for the pendulum-model, and if there is time, on the real
pendulum.
Insert the “Friction-compensation” block from pendlib.mdl into your
controller. Insert the estimate k̂ and simulate. Does it perform better
in the top position?
If there is time, run it on the real pendulum too.
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UNIVERSITY OF BAHRAIN 
COLLEGE OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 
 

NONLINEAR CONTROL SYSTEM 
EENG 485  

 
LABORATORY NO. 4 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

TWO NONLINEAR SYSTEMS AND LIMIT CYCLES 
 

 
 
Objectives :   
 

- The work that will be done is mainly concerned with two nonlinear systems describing functions and limit cycles. 
- Over the nonlinear Control System, a student is supposed to gain some knowledge and experience with using and 

analyzing: 
 

– Nyquist Plots 
– Phase Diagrams 
– Time Histories 
– The Describing Function Method 
– MATLAB, a tool to achieve all the needed analysis. 

 
Expected Lessons Learned from the Experiment:  

 
- Have some understanding of how feedback control works and methods to deal with nonlinearities. 
- The student should have the ability to use tools such as Nyquist plots, phase diagrams, time histories, the 

describing function method, and Matlab to study nonlinear systems. 
 
-  There is much more to learn about linear and nonlinear systems such as: 

– How good an approximation is the describing function? 
– Does the concavity of the describing function affect limit cycle stability? 
– What other methods are available for studying nonlinear systems? 
– What other information does the Nyquist plot provide about a system? 
– How can a student write equations that govern a system if he only knew its input(s) and output(s)? 
– How does a systems engineer make sure a subsystem works in such a way that does not adversely affect 
the    
   whole system? 

 
 

Equipment: 
- Laptop or Desktop Personal Computer. 
- Hand Calculator. 
- Printer. 
 
 
Problem Setup 
Systems under Study  : We are going to analyze two systems as: 
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Van der Pol Oscillator 
  A model of an electronic circuit involving vacuum tubes which acts like a normal resistor when current is 

high, and a negative resistor when the current is low. 
Circuit amplifies small oscillations but reduces large ones. 

  Relatively simple nonlinear system. 
 
 
Super-Cavitating Body 
  Body is enveloped in a cavity while it travels underwater. 

Cavitation allows the body to travel at faster than normal speeds. 
Feedback control is needed to make sure body stays on course. 
Nonlinearity occurs due to the forces which act on the body when it leaves the cavity. 

 
 
Why A Student is  Studying These Systems? 
 
- Would like to control these systems so that they have stable dynamics. 
- If you disturb the system from its equilibrium values, you want it to be able to return to that state. 
- A limit cycle is an isolated periodic orbit around one or more equilibrium points. 
- Hence , if you can find stable limit cycles and stable equilibrium points,  a student is  closer to the goal of having a 

stable system. 
 
 

Example (1) : Van der Pol Oscillator 
 
How You Can find Limit Cycles? 
 
The Van der Pol Oscillator is described by this equation:  

 
A student is needed to write a MATLAB program which solved the equation for x and x' which then plotted x' versus x.    The 
phase plot shows that there is a limit cycle.   Hence, you should get same results as shown below: 
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The Describing Function Method 
 
Here,  the original system’s output is nonlinear for some reason,  in the case of the SCB, due to the planning force of the 
water when it exits the cavity.   Describing Function Method  is an analysis technique that allows a user to think of 
nonlinearities as a feedback to a dominant linear system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
How to Get the Van der Pol Limit Cycle? 
 
The student needs to write  a program that calculates the describing function for the nonlinear term.   The describing 
function’s intersection with the transfer function on the Nyquist plot tells that a limit cycle exists at that point, as well as the 
amplitude and frequency of the limit cycle oscillation.   Using the general Nyquist stability criterion, the limit cycle can be 
determined to be stable or unstable. 
 
This is can be achieved via the following Matlab code: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G(s) = C(sI-A)-1B 

N(y) 

+ 

- 

R = 0 
y 
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Van der Pol Limit Cycle 
 
Next,  the student is  needed to put the equation in linear state variable form,    so you could make use of the feedback 
model:   Solve for the transfer function  and from the transfer function,  get the Nyquist plot.  ( Make use of the followings). 
 

 
 
 
 
 
 
So have you seen the describing function? 
 
 
 
 
 

Example (2) :  Super-Cavitating Body 
 
The second system to be considered is the Super-Cavitating Body (SCB).     The SCB model, in state variable form is: 
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where the  Nonlinearity is governed by the following identities : 
 

 
 
Again after your analysis,  you should get the describing function as follows,  and the associated Nyquist  plot. 
 

 
 
 
 

Below are plots of the transfer function (in the complex plane) and describing function for the SCB.   Intersections of the 

two are points about which we apply the general Nyquist criterion to determine the stability of limit cycles.   When stable 

limit cycles could not be found for the system using both control inputs, I wrote a program which simulated the system and 

plotted the state variables as a function of time. 
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The program calculates the value of the describing function at each time interval and passes that value to the input of the 
feedback system. 
 
 

Next,  we shall took a look at the system with only one control input.  Again, the system was stabilized.  Using MATLAB, you 
need to solve the system of nonlinear equations for the K matrix and from there, calculated the values of the coefficients 
for the transfer function. This would allow you to get the Nyquist plot, however,   you will still  not be able to find any stable 
limit cycles 
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Again,  a simulation of the system is to be done.  This would  yield interesting results!!   Now, instead of solving for the K 
matrix, just pick its values and in that manner try to find a stable limit cycle. 

 
Prof. Ebrahim A. Mattar                      
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UNIVERSITY OF BAHRAIN 
COLLEGE OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 
 

NONLINEAR CONTROL SYSTEM 
EENG 485  

 
LABORATORY NO.5 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

NONLINEAR CONTROL DESIGN (STATE FEEDBACK) 
 

 
 
Objectives:   
 

- To investigate the characteristics of nonlinear system design via a defined Lyapunov function. 
- To design a state feedback controller, hence to simulate this via matlab and do detailed analysis of the 

nonlinear dynamic system. 
 

Equipment: 
- Laptop or Desktop Personal Computer. 
- Hand Calculator. 
- Printer. 

 
 
Steps : 
 
- Follow the given below steps:   

A nonlinear plant is described by. 
 
 
 
 
 
 
 
- Check the Equilibrium points. 
- Simulate the system with no input.  Check the beaviour. 
- For the following input signal: 
 
 
 
- Compute via the Use of the following Lyapunov function. 
 
 

- Via the computation of the eigen values of the linearized A matrix. 
- Compute the value of  Am 
- Construct a state feedback,   observe the controller behavior of the system accordingly. 
- Get the phase portrait for the controlled system. 
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Observations : 

- Hence design a state feedback and show the stability of the designed system. 
- Do think the controller has achieved a better performance ?  Justify this. 
- Measure the associated rise time and the overshoot % . 

 
Conclusion : 

This laboratory has showed us that the dynamics of a linear system of differential 
equations are completely determined by the eigenvalues of the coefficient matrix.    The 
three possible forms are described, and examples are given.   Lastly, we show how to 
compute the parameters of our controller model based upon the dynamics exhibited by 
the phase portraits. 
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UNIVERSITY OF BAHRAIN 
COLLEGE OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 
 

NONLINEAR CONTROL SYSTEM 
EENG 485  

 
LABORATORY NO.6 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

MP CALCULATIONS FOR A LINEAR SYSTEM 
 

 

Objectives:   
 

- To investigate the Nyquist design via the use of M circle.  This gives a relation to the small gain theory for 
the nonlinear case. 

- To simulate this via matlab and do detailed analysis of the nonlinear dynamic system. 
 

Equipment: 
 

- Laptop or Desktop Personal Computer. 
- Printer. 

 
 
Problem Setup 
 
A common actuator in control systems is the DC motor. It directly provides rotary motion and, coupled with 
wheels or drums and cables, can provide transitional motion. The electric circuit of the armature and the free 
body diagram of the rotor are shown in the following figure:  

    

For this example, we will assume the following values for the physical parameters. These values were derived by 
experiment from an actual motor in Carnegie Mellon's undergraduate controls lab.  

• moment of inertia of the rotor (J) = 3.2284E-6 kg.m^2/s^2 

• damping ratio of the mechanical system (b) = 3.5077E-6 Nms 

• electromotive force constant (K=Ke=Kt) = 0.0274 Nm/Amp 

• electric resistance (R) = 4 ohm  

• electric inductance (L) = 2.75E-6 H 

•  input (V): Source Voltage 

• output (theta): position of shaft 

• The rotor and shaft are assumed to be rigid.  
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Model is taken from the Well known Matlab Education site,  please visit it at my web-site, please 
 
 

From the main problem, the dynamic equations in transfer function form are the following:  

 

and the system schematic looks like:  

 

For the original problem setup and the derivation of the above equations, please refer to the Modeling a DC 
Motor page. With a 1 rad/sec step reference, the design criteria are:  

• Settling time less than 0.04 seconds 
• Overshoot less than 16% 
• No steady-state error 
• No steady-state error due to a disturbance  
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Steps: 

- With simplification of the DC. Motor, use the following transfer function:  n=1; d=[(s+1)(s+2)]. 
- Compute the required system to gain value for an Mp of 2 and 2.5. 
- Construct the Nyquist for this system. 
- Verify the stability of the system via simulation and via building up the system. 
- Check the Mp value via Bode analysis.  Make your comments. 
- Make your own conclusions about the experiment and values computed. 
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UNIVERSITY OF BAHRAIN 
COLLEGE OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 
 

NONLINEAR CONTROL SYSTEM 
EENG 485  

 
LABORATORY NO.7 

PRACTICAL:  MAXIMUM OF (10) MARKS 
 

VIA LYAPUNOV-BASED DESIGN  AND  MODEL REFERENCE ADAPTIVE CONTROLLER 
 

 
Project Objectives: 
 
To design a nonlinear controller for the inverted pendulum system.   The design specifications are as : 
 

Settling time of less than 5 seconds. 
Pendulum angle never more than 0.05 radians from the vertical.  
Settling time for x and theta of less than 5 seconds.  
Rise time for x of less than 0.5 seconds.  
Overshoot of theta less than 20 degrees (0.35 radians).  
 

 
 

 
     

M  mass of the cart  0.5 kg  

m  mass of the pendulum  0.5 kg  

b  friction of the cart  0.1 N/m/sec  

l  
length to pendulum centre of 
mass  

0.3 m  

I  inertia of the pendulum  
0.006 
kg*m^2  

F  force applied to the cart   

x  cart position coordinate   

theta  pendulum angle from vertical   

   

 
 
 
Problem setup and design requirements 

The cart with an inverted pendulum, shown below, is "bumped" with an impulse force, F. Determine the dynamic 
equations of motion for the system, and linearize about the pendulum's angle, theta = Pi (in other words, assume that 
pendulum does not move more than a few degrees away from the vertical, chosen to be at an angle of Pi).   
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A classical PID, root locus, and frequency response sections of this problem,  we will be only 
interested in the control of the pendulums position.    For these sections we will assume that 
the system starts at equilibrium, and experiences an impulse force of 1N. The pendulum 
should return to its upright position within 5 seconds, and never move more than 0.05 radians 
away from the vertical.  

However, with the state-space method we are more readily able to deal with a multi-output 
system. Therefore, for this section of the Inverted Pendulum example we will attempt to 
control both the pendulum's angle and the cart's position. To make the design more 
challenging we will be applying a step input to the cart. The cart should achieve it's desired 
position within 5 seconds and have a rise time under 0.5 seconds. We will also limit the 
pendulum's overshoot to 20 degrees (0.35 radians), and it should also settle in under 5 
seconds.  

 
 

System Modeling and Force analysis and Nonlinear system equations 

 

Below are the two Free Body Diagrams of the system.  

 

Summing the forces in the Free Body Diagram of the cart in the horizontal direction, you get the following equation of 
motion:  

 

Note that you could also sum the forces in the vertical direction, but no useful information would be gained.  

Summing the forces in the Free Body Diagram of the pendulum in the horizontal direction, you can get an equation for 
N:  

 

If you substitute this equation into the first equation, you get the first equation of motion for this system:  

 

To get the second equation of motion, sum the forces perpendicular to the pendulum. Solving the system along this 
axis ends up saving you a lot of algebra. You should get the following equation:  

 

To get rid of the P and N terms in the equation above, sum the moments around the centroid of the pendulum to get 
the following equation:  

 

Combining these last two equations, you get the second dynamic equation:  
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Since Matlab can only work with linear functions, this set of equations should be linearized about theta = Pi. Assume 
that theta = Pi + ø (ø represents a small angle from the vertical upward direction). Therefore, cos(theta) = -1, sin(theta) 
= -ø, and (d(theta)/dt)^2 = 0. After linearization the two equations of motion become (where u represents the input):  

 

 
 

 
 

Linear Transfer Function Approach 

To obtain the transfer function of the linearized system equations analytically, we must first take the Laplace transform 
of the system equations. The Laplace transforms are:  

 

Since we will be looking at the angle Phi as the output of interest, solve the first equation for X(s),  

 
then substituting into the second equation:  

 
Re-arranging, the transfer function is:  

 
where, 

 
From the transfer function above it can be seen that there is both a pole and a zero at the origin. These can be 
canceled and the transfer function becomes:  

 
 
 

Linear State-Space  

 
After a little algebra, the linearized system equations can also be represented in state-space form (Prove that !! ):  
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The C matrix is 2 by 4, because both the cart's position and the pendulum's position are part of the 
output. For the state-space design problem we will be controlling a multi-output system so we will be 
observing the cart's position from the first row of output and the pendulum's with the second row.  

 

 

 

 

Matlab representation and the open-loop response 
Transfer Function Approach 

The transfer function found from the Laplace transforms can be set up using Matlab by inputting the numerator and 
denominator as vectors. Create an m-file and copy the following text to model the transfer function:  

 
M = .5; 
m = 0.2; 
b = 0.1; 
i = 0.006; 
g = 9.8; 
l = 0.3; 
 
q = (M+m)*(i+m*l^2)-(m*l)^2;   %simplifies input 
 
num = [m*l/q  0] 
den = [1  b*(i+m*l^2)/q  -(M+m)*m*g*l/q  -b*m*g*l/q] 

 
To observe the system's velocity response to an impulse force applied to the cart add the following lines at the end of 
your m-file:  

 
t=0:0.01:5; 
impulse(num,den,t) 
axis([0 1 0 60]) 

Verify the open loop response.   Hence, discuss it. 

 

Matlab representation and the open-loop response 
State-Space Approach 

M =  0.5; 
m =  0.2; 
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b  =  0.1; 
i   =   0.006; 
g  =  9.8; 
l   =  0.3;   
 
p = i*(M+m)+M*m*l^2;     denominator for the A and B matrices : 
 
A = [0     1                        0                         0 
       0    -(i+m*l^2)*b/p     (m^2*g*l^2)/p      0 
       0      0                       0                         1 
       0    -(m*l*b)/p            m*g*l*(M+m)/p   0] 
 
B = [     0 
             (i+m*l^2)/p 
             0 
              m*l/p] 
 
C = [ 1   0   0   0 
         0   0   1   0] 
 
D = [ 0 
        0] 
 
T=0:0.05:10; 
U=0.2*ones(size(T)); 
[Y,X]=lsim(A,B,C,D,U,T); 
plot(T,Y) 
axis([0 2 0 100]) 

Observe the system outputs after running the m-file.    If you turn to linear state space,  the following matrices of state 
space are defined.   Show how you have get them via linearization. 
 

     A = 
              0    1.0000         0                  0 
              0   -0.1818        2.6727          0 
              0         0            0                   1.0000 
              0   -0.4545      31.1818          0 
 
     B = 
              0 
              1.8182 
              0 
              4.5455 
 
     C = 
           1     0     0     0 
           0     0     1     0 
      
     D = 
           0 
           0 
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Discuss the open loop response.   Show the cart's position and the pendulum's angle . 

Laypunov  Design Approach : 

It is desired to stabilize the inverted pendulum at the position  = 1. 

Design a state feedback controller using Laypunov redesign.   Verify that the tracking error converges 
to zero. 
Design a state feedback controller using ( continuous ) sliding mode control.   Verify that the tracking 
error converges to zero. 
Using simulation, compare the performance of the two controllers.   In the simulation,  you may use 
different parameters constants.  Like ( K=10, q = 0.1  and a =10). 

 

Model reference adaptive controller Design : 

Hence, design a model reference adaptive controller for the inverted pendulum system.  Propose a 
transfer function for P(s) and M(s). 
Simulate the closed-loop system.  In your simulation,  use r= 1,    r= 1 + sin(t)   and   r = sin(t) + sin(2t). 
Show in a clear way your design steps. 
There will be a presentation day,  through which you ( as a group of two) are requested to present the 
design and results. 

 
 
Note :   -   This assignment carries a weight,  please achieve it fully. 
  A group could divide the task among themselves. 

Just in case of any un understandable items,  do not hesitate to ask me. 
Date of Assignment submission to students is :  11/04/2006. 
To be submitted  back  by  4/6/2006 (after the class presentation on same day)   and no longer. 

 
 

  
 
NOTE :   Refer to my Web-site for more information about MATLAB Carnegie Mellon Modeling Part. 


