

1

Policies)

Course Syllabus Form

Instructor Name: Prof. Ebrahim Mattar	Office No: 14-146-A						
Email: <u>ebmattar@uob.edu.bh</u>	Phone: 1787 (6606, 6806)						
Office Hours:	SUNDAY, MONADY, TUESDAY						
1. College: Engineering							
2. Department: All Departments							
3. Program: PhD in Engineering							
4. Course code: ENGG 701							
5. Course title: Advanced Numerical Methods							
6. Course credits: LectureCredit Hours 3-0-3							
7. Pre-requisites: None	7. Pre-requisites: None						
8. Lectures filming & Location: 0 16:30-19:30 (14-140)	~~/						
9. Course web-page. Intps://www.ur-e-mattar-uob.co							
11 Academic year: 2022-2023							
12. Semester: First	Second	Summer					
12. Toythook(s):		Summer					
LH Mathews and K D Fink Numerical Methods usi	ng Matlah						
s.n. waterews and K. D. Thik, Numerical Methods as							
14 Deferences							
14. References.							
Textbook(s):							
J.H. Mathews and K. D. Fink. Numerical Methods using Mat	lab						
R. L. Burden and J. D. Faires. Numerical Analysis							
Advanced Numerical Methods with Matlab [®] 2							
Bouchaib Radi and Abdelkhalak El Ham							
Lectures on Numerical Analysis							
Dennis Deturck and Herbert S. Wilf							
Department of Mathematics							
University of Pennsylvania							
Philadelphia, PA 19104-6395							
Copyright 2002, Dennis Deturck and Herbert Wilf							
April 50, 2002							
15. Contribution of Course to Meeting the Professional Component							
College-level mathematics and basic science: 0 credits							
Engineering topics: 3 credits	Engineering topics: 3 credits						
General education: 0 credits							
16. Other resources used (e.g. e-Learning, field visits, periodicals, software, etc.):							
References:							
S. C. Chapra and R. P. Canale, Numerical methods for Engineers							
I. J. Akai, Applied Numerical methods for Engineers							

University of Bahrain – Quality Assurance& Accreditation Center - Course Specification

Note: Additional information could be added as required by the Instructor, (eg,

17. Course description (from the catalog):

ENGG 701 Advanced Numerical Methods(3-0-3)

This course aims at covering advanced methods of numerical analysis. It briefs introduction to numerical computing, approximation and errors which is followed by methods of solving system of nonlinear equations and approximation of functions. Numerical solutions of ordinary differential equations; initial value problems and boundary value problems, simultaneous differential equations, Runga-Kutta methods, finite difference method. Numerical solution techniques for linear, elliptic, parabolic and hyperbolic partial differential equations. Methods will be implemented using toolboxes of MATLAB.

18. Course Intended Learning Outcomes (CILOs):

	Mapping to PILOs										
CILOs	а	b	С	d	е	f	g	h	i	j	k
1. To identify other advanced and complex methods of numerical analysis and computing.											
2. To present methods for solving system of linear and non-linear equations numerically.											
3. Apply advanced numerical techniques to approximate derivative and definite integral.											
 Solve ordinary differential (linear and nonlinear) equations numerically. 											

19. Course assessment:							
Assessment Type	Number	Weight					
Midterm	1	30 %					
Assignments	5	20 %					
Projects	1	10 %					
Project work	1	10 %					
with a presentation							
FINAL	1	30 %					
with a presentation							

20. Description of Topics Covered							
(Topic Title (e.g. chapter title)	Description					
21. Course Weekly Breakdown:							
Week		Topics Covered (e.g. chapter/section title)	CILOs	Teaching Method	Assessment		
1	SOLU Graph Fixed	TION OF NONLINEAR EQUATIONS nical Method, Bisection Method, Point Iteration,	1	Presentation	Assignment (1)		
2	Fixed	Point Iteration, Aitken's eration, Steffensen's Method	1	Presentation	Assignment (1)		
3	SOLU (III) Roots Raphs	TION OF NONLINEAR EQUATIONS of Nonlinear Equations, Newton- son Method,	1	Presentation	Assignment (1)		
4	Diffic Conve Positi	ulties of Newton-Raphson, Order of ergence, Secant Method, False on	2	Presentation	Assignment (2)		

2

5	Difficulties of Newton-Raphson, Order of Convergence, Secant Method, False Position	2	Presentation	Assignment (2)
6	Numerical solutions of ordinary differential equations; initial value problems and boundary value problems, simultaneous differential equations	2,3	Presentation	Assignment (3)
7	Runga-Kutta methods, finite difference method. Numerical solution techniques for linear, elliptic, parabolic and hyperbolic partial differential equations. Methods will be implemented using toolboxes of MATLAB	2,3	Presentation	Assignment (3)
8	Runga-Kutta methods, finite difference method. Numerical solution techniques for linear, elliptic, parabolic and hyperbolic partial differential equations. Methods will be implemented using toolboxes of MATLAB	3	Presentation	Assignment (4)
9	SYSTEM OF NON-LINEAR EQUATIONS Solution of Nonlinear Simultaneous Equations, Substitution Method, Graphical Method, Fixed-Point Iteration, Gauss-Seidel Method	3	Presentation	Assignment (5)
10	NONLINEAR SYSTEMS OF EQUATIONS (II), Newton Raphson Method SYSTEM OF LINEAR EQUATIONS: Roots of Simultaneous Equations, System of Linear Equations, Direct Methods, (Direct and Iterative Methods), Gaussian Elimination Partial Pivoting, Scaling, ILL-Conditioning Matrices	3	Presentation	Midterm
11	Numerical solution techniques for linear, elliptic, parabolic and hyperbolic partial differential equations.	3,4	Presentation	Assignment (5)
12	Numerical solution techniques for linear, elliptic, parabolic and hyperbolic partial differential equations. Methods will be implemented using toolboxes of MATLAB.	3,4	Presentation	Assignment (5)
13	Numerical solution techniques for linear, elliptic, parabolic and hyperbolic partial differential equations. Methods will be implemented using toolboxes of MATLAB.	3,4	Presentation	Assignment (5)
14	Interpolation and curve Fitting: INTERPOLATION AND POLYNOMIAL APPROXIMATION, Interpolation, Polynomials, Newton Polynomial, Newton Gregory	1,4	Presentation	TEST (2)
15	LAGRANGE APPROXIMATION: Linear Interpolation, Lagrange Polynomials CURVE-FITTING: Curve-Fitting, Least- Squares Curve-Fitting, Non-Polynomials LSCF, Linearization	4	Presentation	Project work with a presentation
16	Runga-Kutta methods, finite difference method.	4	Presentation	FINAL (for ALL)

Academic Integrity Statement

Prepared by: Prof. Ebrahim Mattar

Date: Wednesday, February 8, 2023

Honesty and integrity are integral components of the academic process. Students are expected to be honest and ethical at all time in their pursuit of academic goals in accordance with Regulations of Professional Conduct Violations for University of Bahrain Students, UOB Plagiarism Policy and UoB Guide to Students Rights and Duties. Any breach of academic integrity will be dealt according to the Regulations for Professional Conduct Violations