

University of Bahrain Quality Assurance and Accreditation Center

		Course Syllabus I	Form	
Course code:	EENG 485	Course title:	Nonlinear Contro	l Systems
College: Engineering				
Department: Electrica	al & Electronics Engir	neering		
Program: Electrical ar	nd Electronics (for bo	oth Programs)		
Course credits: 3-1-3				
Course NQF Level: 8				
NQF Credits: 3				
Prerequisite: EENG 38	31			
Lectures Timing & Loo	cation: MW, 1:00-2:	45, Room: 14-140		
Course web page: <u>ht</u>	tps: //www.dr-e-ma	<u>ttar-uob.com/</u> , <u>ebma</u>	ttar@uob.edu.bh	
Course Instructor: Dr	Ebrahim A. Mattar			
Office Hours and Loca	ation: MTW: 11-1 pr	n (14-143)		
Course coordinator: D	Dr Ebrahim Mattar			
Academic year: 2019/	/2020			
Semester:		First	Second	Summer
Textbook(s):				
Textbook(s): Hassan K Khalil, Nonli	near Systems, 3rd Ec	dition Prentice - Hall I	nternational (UK), 2002.	
References: JJE Slotine & W.LI. Ap	plied Nonlinear Cont	trol. Prentice Hall, En	glewood Clifs, New Jersey	1991.
Other learning resour	ces used (e.g. e-Lear	ning, field visits, peri	odicals, software, etc.):	
Note: Add	litional information of	could be added as req	itation Center - Course Sy Juired by the Instructor, (e without the department co	g, Policies)

QF-20-rev.a.3

Course description (as per the published):

Nonlinear Control treats the analysis and synthesis of nonlinear control systems. The course consists of three main parts: an analysis part presenting the theoretical foundation; a design part introducing the most important control design methods; and a part dealing with other nonlinear control methods.

	Map	ping	to PIL	Os					
CILOs	1	2	3	4	5	6	7		
Introduction: nonlinear problems and phenomena	~								
Linearisation, phase-plane analysis, equilibria, oscillations		~							
Stability theory: Lyapunov methods.									
Stability theory: input-output methods.		~							
Describing function analysis.			✓						
High-gain design methods: linearization by high gain and sliding modes					✓	~			
Lyapunov design methods, and feedback linearization, SMC, Adaptive Control					✓		✓		

Course Intended Learning Outcomes (CILOs)

Course assessment:				
Assessment Type	Details/ Explanation of Assessment in relation to CILOs	Number	Weight	Date(s)
Assignments (3): Online	1,2,3		20%	Refer to course weekly breakdown below
Assignments (2): Take Home	1,2,3,4,5,6,7		10%	Refer to course weekly breakdown below
Examinations Midterm - (1)	3,4		20%	Refer to course weekly breakdown below
Laboratory/Practical (4) Labs	1,4,6		10%	Refer to course weekly breakdown below
Final Examination	1,2,3,4,5,6,7		40%	(June -2020)
Total			100%	

Description of Topics Covered	
Topic Title	Description
Topic Title	Description

(e.g. chapter/experiment title)	
Introduction: nonlinear	Learn a variety of nonlinear problems and phenomena.
problems and phenomena	
Linearisation, phase-plane	How to find the equilibria of nonlinear systems, and how to do the analysis of
analysis, equilibria, oscillations	motion using the concept of phase planes.
Stability theory: Lyapunov	Analysis of nonlinear phenomena in nonlinear systems using the Lyapunov
methods.	theorems, hence, to use the computational methods to enhance the analysis.
Stability theory: input-output	Why the use of the input-output methods, and how they affect the system closed
methods.	loop stability design. Show few examples also and illustrate that via simulations
	and practical laboratories sessions.
Describing function analysis.	Give full description about the describing functions, and how this theorem can be
	used towards the analysis of nonlinear systems.
High-gain design methods:	Comparisons between different closed loop design methods, with High-gain
linearization by high gain and	design methods: linearization by high gain and sliding modes.
sliding modes	
Lyapunov design methods, and	Much advanced closed loop nonlinear control design techniques, Lyapunov
feedback linearization, SMC,	design methods, and feedback linearization, SMC, Adaptive Control.
Adaptive Control	

Week	Date	Topics covered	CILOs	Teaching Method	Assessment
1		Review		Lectures	
2		Nonlinear Control treats the analysis. Introduction: nonlinear problems & phenomena	1	"	Self- assessment
3		Linearisation, phase-plane analysis, equilibria, oscillations	1,3	"	Self- assessment
4		Stability theory: Lyapunov methods.	1,3	Practical work	Self- assessment
5		Stability theory: input-output methods.	1,3	Practical work	Quiz 1
6		Describing function analysis.	1,3	Practical work	Mid-Term
7		High-gain design methods: linearization by high gain and sliding modes	1,2	Practical work	Mid-Term
8		Mid-semester break			
9		High-gain design methods: linearization by high gain and sliding modes	1,2	Practical work	Self- assessment
10		Lyapunov design methods, and feedback linearization, SMC, Adaptive Control	1,3,5,6	Practical work	Self- assessment
11		Lyapunov design methods, and feedback linearization, SMC, Adaptive Control	1,3,5,6	Practical work	Quiz 2
12		Lyapunov design methods, and feedback linearization, SMC, Adaptive Control	1,3,5,6	Practical work	Self- assessment
13		Applications of NC-1	1,3,5,6	Practical work	Test2
14		Applications of NC-2	1,3,5,6	Practical work	Self- assessment
15		Review	1,3,5,6	Practical work	Self- assessment

16		Review	2,6	Practical work	Self- assessment
----	--	--------	-----	----------------	---------------------

Prepared by:	Dr Ebrahim Mattar	
Date:	28/09/2020	

4